Video Compression Basics

Why Compression Is Critical

- Digital video formats generate huge numbers of bits
 - HD video creates 1 trillion bits every 12 minutes
- Bits are not free
 - A cost to store, transmit each one
 - However small the cost becomes per bit, any number multiplied by trillions is still large
- Bits are not unlimited
 - Transmission and storage have physical limits
 - Limits expand over time but operations usually constrained by older infrastructure

Value and Types of Compression

- By eliminating bits, compression will
 - Cut costs
 - Fit data within current physical limits for storage, transmission
- Two basic types of compression
 - Lossless: eliminate just redundant bits
 - Modest reductions (for images, 2-3X on average)
 - Decompression reproduces exact original dataset
 - Lossy: eliminate least important bits (too)
 - Major reductions (up to 100X or more)
 - Decompression reproduces only a similar copy
 - May be indistinguishable (to HVS) from original

Human Visual System (HVS)

- Visual inputs are very heavily processed
 - Visual cortex most massive system in brain
 - Intended to let us see what is important
 - Don't see everything in our field of vision
 - Don't notice everything we see
- Lossy image compression makes use of limits and preferences of HVS
 - Keeps cost/effort of digital video manageable
 - Produces images that are "good enough"
 - HVS can't appreciate perfection, even if we could afford to achieve it

Digital Compression Overview

- Like many other technical subjects
 - Basic ideas are simple, difficulty is all in details
 - Principles, strategies, terminology easy to understand
 - Don't need to know the math
- Why better video compression is better
 - Higher image quality for same cost
 - Lower cost for same image quality
 - Makes possible what otherwise would not be technically feasible

Compression Strategy

- First, eliminate least interesting bits
 - "Lossy" compression is fundamental
 - Preserve picture quality relative to HVS
 - Stop when reach target bits-per-second rate
 - The lower the bit rate, the more challenging the task of preserving picture quality
- Then, eliminate redundant bits in remainder
 - Lossless "entropy" encoding

Compression Standards

- Best-known standards from joint ISO & ITU expert groups
 - ISO: International Standards Organization
 - ITU: International Telecommunications Union
 - JPEG (Joint Photographic Experts Group)
 - Still pictures, formed in 1986
 - MPEG (Motion Pictures Experts Group)
 - Moving pictures, formed in 1988

Why Lossy Compression?

- Most important image compression technologies (JPEG, MPEG, etc.) are lossy
 - Simply too much data for lossless compression (2-3X reduction not interesting)
 - Lossy compression is a spectrum
 - Nondegrading: increasing differences from original when uncompressed, but still unnoticeable
 - Degrading: differences from original increasingly noticeable when uncompressed, but still within acceptable limits
 - "Acceptable" relative to purpose, audience, and available bit budget

